Advanced
Modularization,
Aspects, and Their
Application in Software
Product Lines

Aspects around us

Ing. Jakub Perdek asout the autt

https://jakubperdek-26ez

| am a doctorand focused on reuse in the area of software product lines at the Institute of [nfd
Information Systems and Software Engineering, Faculty of Informatics and Information Tec\nno

Slovak University of Technology in Bratislava.

| have membership in AdvanSD research group.

» Research Fields

» Software product lines (dissertation): Annotation
based, Aspect oriented, and model driven.

» Information retrieval (master thesis): Similarity
metrics, LDA, indexing, BIG Data (Hadoop, PIG, Hive),
etc.

» Machine and Deep learning (bachelor thesis): Their
application.

» Data structures and algorithms: Experimenting with
algorithms applied to different technologies.

» Computer Graphics (side): Its use in Web development.

A

http://www.uisi.fiit.stuba.sk/
http://www.uisi.fiit.stuba.sk/
http://www.fiit.sk/
http://www.fiit.sk/
http://advansd.fiit.stuba.sk/

Web Page of the

subject

Literature and Links

General
Aspect-Oriented Software Association: htips://aosd.net/

Programming conference: hitps://programming-conference.org/

000

Aspect)
Home page of Aspectd: https://eclipse.dev/aspect)/

Aspect] Development Tools (AJDT) plugin for Eclipse: https://swww.eclipse.org/ajdt/

Aspect Oriented Programming: Radical Research in Modularity: Kiczales' Gregor Lecture at Google

Capabilities, Basics, Advanced topics and Application of AspectJ: The Aspect] in Action Laddad, R.

progr ing. Gi ich, CT: Manning. ISBN 978-1-930110-93-9.

000

ivas, 2003. AspectJin

https://jakubperdek-26e24f.qgitlab.io/aosd.h

> C D fle.///EJperdekAOSD/aosdhtml

Lectures

The scheduled lectures prepared for this subject with available materials and r \
are:

v

& A List of Submissions and |

Lecture 1: .
Advanced Modularization, Aspects, and their Application in d d I
Software Product Lines ea I n es

You have to submit during semester following items:

' [up to 21.10.2024] Project objective: 200-300 words can be more
@ [up to 03.11.2024] Mini project: Aspect-oriented software
ladinias development using Theme, patterns, and Aspect)

Aduznced Topies in Aspeck-oriented Langlsges: Rspect) e [up to 18.12.2024] Report in research article template (not
Programming Language
mandatory but recommended) as PDF containing at least 8 pages.
e [up to 18.12.2024] Artifacts created during project (everything
. what is created to support final outcomes as code, diagrams,
[J:TE'L figures, graphs, etc.)

Aspect-Oriented Software

Developement i
~

Taught by: Doc. Ing. Jan Lang, PhD., Ing. Jakub Perdek
Asistent: Ing. Jakub Perdek, Ing. Viktor Matovic
Modified Code

Study type: Master's

Study program: Intelligent Software Systems

Term: Winter source code

Weekly hours (lectures—exercises): 2-2

Completion: Exam

Credits: 6

Source: https://sites.google.com/site/sites/system/errors/
WebspaceNotFound?path=%2Fjavatouch%2Fintroductiontoaop

executable

https://sites.google.com/site/sites/system/errors/

What it will about?

» Aspect-oriented programming

» Its features in various languages (Java, JavaScript/TypeScript, C, C++, Python, DSL (doma
languages), ...)

Implications to use-cases
Its use across the whole development cycle (analysis, design, implementation, testing,

Benefits and drawbacks of aspect-oriented programming

vV v v v

Its use in advanced modularization + cases

» Its use in software product lines as complex systems
» Advanced modularization
» Software product lines as complex systems

» Variability handling (in annotation based software product lines)

» How to evolve variable features independently using aspects

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Metal animals

NQASPECTS
IN PRODUCTS

Puzzle to play Load image Play Preview Gallery

HEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEE
- Select from puzzles

~J
4

eSIgn 3D Loadi image Play Preview Zoom Gallery

VS.
Variability

EEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllq

flowers butterflyes fooc »

Food 1
PNG PNG

M PHARMACEUTICAL
.{LABORATORIES

EIEEEEEEEEENIEI DN EEEEEEEEEE
\

¥

%IIIIIIIIIIIIIIIIII

Puzzle app.
VS.

———y

Rallete

...... ..o

Previous page of the course

» http://wwwz2.fiit.stuba.sk/~vranic/aosd/index.ht

Projects

A List of Submissions and deadlines

You have to submit during semester following items:

e [up to 21.10.2024] Project objective: 200-300 words can be more
e [up to 03.11.2024] Mini project: Aspect-oriented software development using
Theme, patterns, and Aspect)

e [up to 18.12.2024] Report in research article template (not mandatory but
recommended) as PDF containing at least 8 pages.

e [up to 18.12.2024] Artifacts created during project (everything what is created to
support final outcomes as code, diagrams, figures, graphs, etc.)

Mini project: Aspect-oriented software
development using Theme, patterns, and

Aspect)

Specify, desing and implement small aspect-oriented project with Themes patterns and Aspect] primarily as

part of your semestral project if it is feasible:

Prepare following Themes DOC/UML: 5 points
e 1. The basic view as an annalytic model Themes/DOC that captures themes and relationships.

Two themes are sufficient. 1 point
e 2. The transformation from basic view (previous point) into crosscutting view inn Themes/DOC

notation. 1 point
e 3. The design model in Themes/UML notation with specified relation between themes. You

may use the indirect relationships known from the JPDD notation. 3 points

Prepare following aspect-oriented code written in Aspect): 5 points
¢ 1. The aspect with all necessary classes provided as Mock. The code has to be compillable. 2
points
e 2. The application of autochtonous (native) aspect-oriented design pattern. 2 points
e 3. Explanation of the applied pattern. The contradicting forces and the way how are resolved

should be mentioned. 1 point

Project Assessment

Project Assessment

The semestral project and mini project fully for 50 points will be assessed according to following criteria:

e Project objective - 5 points

e Part on aspect-oriented software development using Theme, patterns, and Aspect) - 10 points

e Project report and acompanying artifacts — 35 points
o Results (what have you actually done) — 15 points
o Scope (the problem you've chosen shouldn't be trivial) — 4 points
o Presentation (how well are the results presented in the report) — 4 points
o Interpretation (how well you explained the meaning of what you've done) — 6 points
o Comparison (how well you compared your results to what others have done in that area) — 6 points

Seminar Presentations - Demonstrate
Progress of Your Work!

The length of your presentation is restricted to 12 minutes. Ten minutes is usually enough, but a presentation
that is too short can result in omitting essential parts. The content is determined by the actual week of the
semester. The later you present, the more content, such as your implementation, diagrams, and results are

expected.
The presentation itself and discussion can be in Slovak or English.

Please submit your presentation to AIS a day before you present, and notify your discussants, at least with

the abstract of your work, to acquaint them with the topic that will be presented.
The context of the presentation should include:

e The overview of a current state in the focused area/about solved problem.

e How does your intended contribution/chosen topic relate to this subject (aspect-oriented
programming and/or software product lines).

e Present your own contribution/ideas. (recommended in all project phases - highly praised)

Show the supporting code (if any) and/or application for the introduced contribution.

Visualize what is done. Use diagrams, tables, use cases, etc. (later phases).

Provide evaluation of the results, capabilities, and outcomes. Do not forget to discuss them.

Compare your work to what others have done if it is possible.
Do not forget to mention what your methodological contribution lies in. Additionally, prepare

research questions (two are enough).
State how your semestral work will continue - future work. (You can check if what you will

provide/provided is enough.)

Total: 15 points

Discussions After Presentations

Discuss weak and strong aspects of the presented work! Recommend improvements or further

direction.

Each seminar presentation will have at least two discussants asking for more details, discussing weak and

strong aspects of the presented work, and recommending improvements.

The content of a discussion is assessed according to the occurrence of the following cases:

The adequate addressability of a discussed topic.
Following and extending discussed ideas if possible.
Taking into account alternative directions in solving/handling presented problems or getting

more details about them.
At least three high-quality questions, including adequate addressability and reactions during

the discussion.

Inclusion of aspect-oriented topics such as weaving, obliviousness and quantification, A s

separation of crosscutting concerns, pointcuts, etc., into questions. Ssessment u m ma ry
Questions should not be too familiar or subjective.

Points out possibilities for evaluating presented contributions.

The maximum number of points for presentations and

discussions is the following:

Do not forget to participate also in the following general discussion. Comment and ask about presented

topics. Presentation - document: 6 points
Presentation

Each discussion: 3,5 points
Presentation - oral: 7 points

Number of discussions: 2 times

Discussion)
Discussions: 7 points

Total: 7 points

Overall Assessment

» Projects - 50 points (project objective + semestral project + mini project)
» Seminars - 20 points (discussions and presentation)

» Final exam - 30 points

» 100 points

@_ “Lecture 1: Advanced Modularization, Aspects, and their Application in Software Product Lines

[%_ “Lecture 2: Advanced Topics in Aspect-oriented Languages: Aspect) Programming Language

@_ “Lecture 3: Aspect-Oriented Design Patterns and Their Use For Advanced Modularization

@_ YLecture 4: Aspects in Analysis and Design: Theme and JPDD

@_ ~Lecture 5: Technique:.; and 1:echnologies in Variability Management: From Conditional Compilation, Frame Technology, Framed
Aspects, Lightweigth Method towards Aspect Free Products

@_ “Lecture 6: Aspects and Use Cases N4
[%_ “Lecture 7: Component and Composite Approach to Aspect-Oriented Programming: Application to Software Product Lines NV
“Lect 8: Automated Complexity-Optimized Lightweight Variability Handling with Expressed Feature Models in Code: N

- Lecture o: Applications in Software Product Line Evolution

@_ “Lecture 9: Supporting Reuse With Aspects Vv

@_ “Lecture 10: [Guest Lecture] Ing. Oliver Udvardi: Optimalizacia vyvoja softvéru pomocou softvérovych produktovych linii v

@_ “Lecture 11: Discussions and Final Presentations (optionally topics from Software Product Lines) N

@_ “Lecture 12: Discussions and Final Presentations (optionally topics from Software Product Lines) v

Plagiarism
» Taking each other's work, which is not yours as your own, is known as plagiarism. It's
forbidden practice. Cases, where such practices are detected will be sent for further

investigation and resolution by a disciplinary commission according to valid rules.
These rules apply in this subject and disciplinary process.

Resolving Plagiarism Cases In This Subject

* Cheating on tests:
Disqualification from the test and assigning zero points.
* Cheating on exams:
Disqualification from the exam and granting FX from the whole subject.
* The parts of unreferenced work in the project which are not authors’:
Rejection of submitted project and granting FX if elaboration of the project is
mandatory from the whole subject. Plagiarism is not tolerated in any range.
Disciplinary Commision
Disciplinary violation will include the participation of the dean of faculty in its negotiations and
resolution with a disciplinary commision of this faculty. The disciplinary commission then optionally |
with taken conclusions, gives recommendations to the dean to:
* give a guilty student a rebuke
 conditionally disqualify a guilty student from the faculty
e disqualify a guilty student from the faculty

https://www.fiit.stuba.sk/disciplinarna-komisia.html?page_id=1718

Plagiarism Prevention /
Guidelines

» Guidelines such as UC Davis demonstrate actions and practices to get around plagiarism.
The most important of them are:

Work continuosly and independently.

Check your work after some time (two days or a week) and improve formulations.
Do not use ChatGPT or any artificial intelligence for paraphrasing.

Take brief notes from other materials along with used sources.

Reference paraphrased work with reference in each sentence where it is used. Reference others'
work correctly in a way that is recognizable from yours (references at the end of the block probably
do not conform to this).

Share information about your work to such an extent that some details will not be provided. For
example, talk about code but not show all its fragments or provide the whole project to others.

Do not apply minor/cosmetic changes to other's work (replacing words with their synonyms,
changing the order of sentences, etc.) or give credit to it if the work is the same in substantial aspects
as yours.

Do not cheat and respond to others on tests, except to the personnel from the subject

https://ossja.ucdavis.edu/avoiding-plagiarism-mastering-art-scholarship

Advanced
Modularization,
Aspects, and Their
Application in Software
Product Lines

Aspects around us

[C++, Java, Smalltalk, Python,...]

- A T a

Class A

\: :;; | What is the

main proble
REUSABILITY

?

Class B Class C

N \ -

Burce: http://ssel.vub.ac.be/jasco/lib/exe/fetchbée2.php
cache=cache&media=documentation%3Ajasco-vub-session1.ppt

http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt

COMP A

N

COMP B

/

Source: http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
?cache=cache&media=documentation%»3Ajasco-vub-session1.ppt

Glue Code

[Java Beans, EIB, .NET, CORBA,...]

~

COMP D

-

COMP C

/

http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt
http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt

Good Modularity

[Picture taken from the aspectj.org website]
urce: http://ssel.vub.ac.be/jasco/lib/exe/fetchbé6e?2.php
ache=cache&media=documentation%3Ajasco-vub-session1.ppt

http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt

Bad modularity

Logging in Apache Tomcat

CEEE
(TR BRI
=i .

BAD mOd u Iarity: [Picture taken from the aspectj.org website]

Source: http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
cache=cache&media=documentation%3Ajasco-vub-session1.ppt

http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt

How to separate concerns?

-using design patterns

-using component development,
encapsulating functionality
and providing it through interfaces

-using architectural patterns

|
®
%ﬂ@
©
5
Q
5
>
e
1 o
O
5
D
o
3
O
Q)
=

~ joinpoint ™S

pointcut

ource: p://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
cache=cache&media=documentation%3Ajasco-vub-session1.ppt

Logging
Aspect

http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php
http://ssel.vub.ac.be/jasco/lib/exe/fetchb6e2.php?cache=cache&media=documentation%3Ajasco-vub-session1.ppt

How to separate crosscutting
concerns?

New concern is not tangled
with original code

Original code should remain untou
mm) Open-Closed principle
’ ' One of SOLID principles

For extensions For changes

Injecting content to particular
places after development.
At compilation-time
At load-time
At run-time

Aspects-oriented paradigm\

Weaving functionality of crosscutting concerns
that are preserved in modular way in
standalone files called aspects into original

UC Place an Order S]m] lal" analogy

Basic Flow: Place an Order With use cases?’

1. Customer selects to place an order.

2.. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

Example taken from: http://www2.fiit.stuba.sk/~vranic/

UC Place an Order

Basic Flow: Place an Order

<<include>:
1. Customer selects to place an order. 53 i

2. UC Search Products is being activated.
.) . . Customer
3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.
5. Customer continues in ordering further products.
6. Customer chooses the payment method, enters the payment data,
and confirms the order.
7. Customer can cancel ordering at any time.

8. The use case ends.

public class Ordering {

public void order() {

new ProductSearch().search(product);

rezi) Example taken from: http://wwwa2.fiit.stuba.sk/~

UC Place an Order

Basic Flow: Place an Order

<<include>:
1. Customer selects to place an order. 53 i

2. UC Search Products is being activated.

i et - Cust
3. Customer confirms the product selection and adjusts its quantity. usiomer

4. If the product is available, System includes it in the order.
5. Customer continues in ordering further products.
6. Customer chooses the payment method, enters the payment data,

As concern that
and confirms the order.

7. Customer can cancel ordering at any time. . do not know about
8. The use case ends. Some kind Place An Order
of weaving concern

public class Ordering {
public void order() {

new ProductSearch().search(product);

rezi) Example taken from: http://wwwa2.fiit.stuba.sk/~

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

Extension points:
« Checking Product Availability: Step 4 ~ Example taken from: http://ww

UC Place an Order

Basic Flow: Place an Order

1. Customer selects to place an order. Place an Order _s<include>> Search Products
2. UC Search Products is being activated. N
|

3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order. Customer <<extend>>
5. Customer continues in ordering further products. :

6. Customer chooses the payment method, enters the payment data, |

and confirms the order.
7. Customer can cancel ordering at any time. Modify the Restock Plan
8. The use case ends.

Extension points:
+ Checking Product Availability: Step 4

UC Modify the Restock Plan
Alternate Flow: Modify the Restock Plan

After the Checking Product Availability extension point of the Place an
Order use case:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering

@ prea extension point. Example taken from: http://wwwa2.fiit.

UC Place an Order

Basic Flow: Place an Order

1. Customer selects to place an order. Place an Order _s<include>> Search Products
2. UC Search Products is being activated. N
|

3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order. Customer <<extend>>
5. Customer continues in ordering further products. :

6. Customer chooses the payment method, enters the payment data, |

and confirms the order.
7. Customer can cancel ordering at any time. Modify the Restock Plan

8. The use case ends.

Extension points:
+ Checking Product Availability: Step 4

UC Modify the Restock Plan

Alternate Flow: Modify the Restock Plan

|

e Checking Product Availability extension point of the Place an
er use case:

Jtep 4:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering

@ prez extension point. Example taken from: http://wwwa2.fiit.stu

Approach to A

SPECT-ORIENTED

Use-Case Modelli NS SOFTWARE DEVELOPMENT
WITH USE CASES

Using Aspects

A refreshingly new approach toward improving use-case IVAR JACOBSON
modeling by fortifying it with aspect orientation." -- PAN-WEI NG
Ramnivas Laddad, author of Aspect] in Action "Since the
1980s, use cases have been a way to bring users into software l
design, but translating use cases into software has been an R T e
art, at best, because user goods often don't respect code el Ml
boundaries. Now that aspect-oriented programming (AOP) B00CH
can express crosscutting concerns directly in code, the man ACOBSON
who developed use cases has proposed step-by-step methods RUHBAUGH
for recognizing crosscutting concerns in use cases and writing |
the code in separate modules. If these....

Source: https://www.google.com/url?sa=i&url=https»h3A%2F%2Fwww.amazon.com%2FAs
Software-Development-Use-Cases%2Fdp%2F0321268881&psigs=A0vVaw0QVBnKKncqUKN

1726665756534000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTClj
AAAAARAF

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.amazon.com%2FAspect-Oriented-Software-Development-Use-Cases%2Fdp%2F0321268881&psig=AOvVaw0VBnKKncqUKNR37gDS5eT&ust=
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.amazon.com%2FAspect-Oriented-Software-Development-Use-Cases%2Fdp%2F0321268881&psig=AOvVaw0VBnKKncqUKNR37gDS5eT&ust=

@ce an OrdD @cel an O@
A A

- m— — — — S — — ——
— —— — — ——
—— —

¢ Place an Order /) v Cancelan Order
OrderManager Product OrderManager Product
orderProduct) cancelOrder()
i Prezi

@ce an OrD
0

— —— — —
—

T —

— —
— o —

OrderManager

orderProduct)

Product

o

— —— — —
— -

OrderManager

— —
—
—

—
— —
e e — —

cancelOrder()

Product

N

OrderManager

orderProduct()
cancelOrder()

Symmetric AOP modularizati

Whole is composed out of the
aspects at the same level: Each aspect is differen:

Retail

Symmetric AOP modularizati

Retail/order is composed out of its concern
(create, cancel, modify,...) at the same level:

Whole

@ce an OrD
0

— —— — —
—

T —

— —
— o —

OrderManager

orderProduct)

Product

o

— —— — —
— -

OrderManager

— —
—
—

—
— —
e e — —

cancelOrder()

Product

N

OrderManager

orderProduct()
cancelOrder()

Asymmetric AOP modulariz

Preexisting
whole

Asymmetric AOP modulariz

Base decomposition @) Aspects Asp

Symmetric AOP modularizati

Whole is composed out HyperJ
of different views

Peer use cases
Symmetric AO

Entities at the same level are composed int

VS.

Asymmetric AQ

Extend relationship
Basic entity is affected by special enti

Dictionary of basic terms

» Concern

» Specific requirement or consideration that must be addressed in order to satisfy overall
system goal (Laddad 2003).

» Software system

» Realization of a set of concerns (Laddad 2003).

» Aspect

» New unit of modularization. Aspects crosscuts other modules.

» Crosscutting concerns

» System-wide concerns (such as logging, remote management, and path optimization,
etc.) that span multiple modules

» Aspect weaver

> A cgmlpiler-like entity which composes the final system - combines core and crosscutting
modules.

» Weaving

» The process where core and crosscutting concerns are combined into the final system.

» Pointcuts

» Sets of join points

Dictionary of basic terms

» Join Point

» Any point in the system that can be executed (Laddad 2003). It can be calling a method,
creating a class, accessing a variable, but also executing the condition in the code.
Different languages only support certain captures types, for example the developed
language AspectJ works at the level of methods and fields (Lee and Kang 2004).

» Determined with pointcuts

» Variation Point

» A point that identifies the places where it occurs to variations (Jacobson et al. 1997). As
long as it is modeled on their basis variability, then the main components of assets
consist of these points, and also of from them, com[l)onents of the target system will be

created using variants (Webber and Gomaa 2004). All available variants are thus
supported.

» Advice

» The advice is the action and decision-making part which it allows for the expression of
intersecting action at the joining point (Laddad 2003). Point connection is captured by
the corresponding pointcut. It is implemented as construction in the form of a method
called before (before), behind (after) or wrapping (around) the specified join point.

» To express modification of original code

» Pointcuts

» Selects sets of join points and collects context in their place

Dictionary of basic terms

» Code Tangling

» Module handles multiple concerns simultaneously.

» Code Scattering

» Single issue is implemented in multiple modules.

» A) Duplicated code blocks e —
» Repeated almost identical code l l i Busrass 03¢
» B) Complementary code blocks .b"]
» Complementary parts of the same . :
p ry p oo

concern implemented by various modules

aken from: Magableh, Aws & Alsobeh, [T 3 ‘
nas. (2018). Aspect-Oriented Software Security _ :
evelopment Life Cycle (AOSSDLC). e L Code Tangling (h)
.5121/c¢sit.2018.81204.

Implementation of logging

Automatically woven

concern catons

API invocations

Accounting module Accounting module
API
invocation
Logging Logging I\ Logging
module aspect l/ module
ATM module ATM module
Database module Database module

Figure 1.6 Implementation of a logging concern using AOP techniques: The logging aspect defines
the interception points needing logging and invokes the logging APl upon the execution of those
points. The client modules no longer contain any logging-related code.

Figure 1.5 Implementation of a logging concern using conventional techniques: The logging module
provides the API for logging. However, the client modules—Accounting, ATM, and Database—each
still need to embed the code to invoke the logging API.

Taken from: LADDAD, Ramnivas, 2003. AspectJ in action: practical aspect-oriented
Greenwich, CT: Manning. ISBN 978-1-930110-93-9

Pointcuts - different kinds

Annotation based pointcuts
Method/constructor call
Method/constructor execution
Execution object pointcuts
Control flow based pointcuts
Argument pointcuts
Initialization

Field Access

Exception Handling

Advice execution

Conditional pointcut

vV vV vV vV v vV vV vV v v. v Y

Pointcut based on Lexical structure

Example: Annotation based

F EL¥ LFRN

® ® ® g i uas i L R N Y LL L s -
v = cip. M ; ;
JO] n pO] nts ar markerVP1 = { "global": {}, "inner": { "p": 699 } }

1
2 @AnnotationVPI1.variableVP() var newVaniable = "Hallo";
| var newVariable = "Hallo™"; 3 var markerVP2 = { /«...+/ };
. : 4 @ AnnotationVP2.functionVP() function a(paraml, param2) {
2 function a(paraml, param2) {
3 @wholeClass({ "outsideGallery": "true" }) 5 var markerVP3 = { [#..x/ };
1 class GG { 6 @ AnnotationVP3.classVP()
5 callMe() { /+ ... callMe function logic ... 7 class GG {
*/ } 8 @ AnnotationVP10.class Variable VP()
6 } 9 markerVP6 = { /»...%/ };
7} 10 @ AnnotationVP4.classFunction VP()
8 /x ... other content ... x/ 11 callMe() {
12 var markerVP4 = { /« ... «/ };
13 }
14 @ AnnotationVP1 1.classVariable VP()
. . 15 markerVP7 = { /»...«/ };
Automated pointcut extraction 16)
with semantic information 17}
18 var markerVPI5 ={ /+...«/ };
19 /+ ... other content ... =/

@)
C e

) P o:.o ’«
OB 0 O XS0
g oSl Mo e 1) Q
‘...‘. 2 Q ...0 22 Q
~~~~ O -.z.:.:’:e:0'3:0-3:0:0:0:-: ..
2 X >0 000:00.000.00..00 .QQ o
< 20,0600 00 a0 00 e eds
e v 0030 o0 st a0 a0 000 000 00
X : QReealaatndio-odaiealecalngo
O._® ® O O 0RO RO @) ’
' ' a3y 2 .otot.otot
X B30 000 OKEUIX 0 OB IXS0 Sl BX0
<>ﬂ S ’Q .00 00 00 000 -0. Qo 2 X0~ 0.

X s.s.:.:Qc. 0:.:0:0:0 .:0:. . . O X .3‘:.3’.

P I ICICICICICICIAES
<>2>><>g<><><> a<><><><> <><><>g<><><>

o ;o 000 000 Qo 000 o’o 000 00 000 000
’-oe&o ~O0ae0- O o -omoo KO0
X0

o -0 *

00 cQo



=
O WO 0~ Wb

R R R R B B W W W W W W W W NMNNMNNMNNNNRERRRRERERERERERE
W Jd o Mk W EOWwWom-do Ok WP OWwo-do O Wk E OWwom o 0k W

>
7]

var markerVPl = { "global": {}, "inner": { "p": 0 } }:
@AnnotationVPl.variableVP () wvar newVariable: string = "Hallo";

[Evar markerVP2 = { "global": { "globalVariables": [{ "name": "newVariabl

@AnnotationVP2.functionVP () function a(paraml: number, paramZ: number)
var markerVPB = { "allAvailableCalls": ["a([%[paraml: number]%], [%
: [

11 }, "inner": { "p": 737, "allAvailableCalls": ["a([%[

@wholeClass({ "outsideGallery": "true" })

class GG {
@AnnotationVP18.classVariableVE()
H markerVPe6 = { "zllhvailableCalls": ["a([% [paraml. number]%], [%
- § 1, "global": { globalVarlables : [{ "name": "newVariable",
@wholeClassMethod({ "outsideGallery": "true" })
H callMe() {
E% : var markerVP4 = { "allAvailableCalls": ["a2([%[paraml: numbe

L é - 5 § }1 }, "inner": { "p": 351, "allAvailableCalls":
; console log("Called") ;
= g var markerVP5 = { "allAvailableCalls": ["a([ [paraml: numbe

- § ; § § }1 }, "inner": { "p": 351, "allAvailableCalls":

new GG() callMe() ;
H var markerVP9 = { "allAvailableCalls" ["a([%[paraml: number]%], [%
[

@AnnotatlonVP25 varlableVP() let local = 5;

var markerVP10 = { "allAvailableCalls": ["a([%[paraml: number]%], |
@AnnotationVP35.variableVP () war globalOne = ©¢;
var markerVP1ll = { "allAvailableCalls": ["a([%[paraml: number]%], [
@AnnotationVP45.variableVP () let local2 = 5;
var markerVP12 = { "allAvailableCalls": ["al(]
@AnnotationVP55.variableVP () wvar globalOneZ =
var markerVP13 = { "allAvailableCalls": ["al(]
return self;

% [paraml: number]%], [
67
% [paraml: number]%], [

var markerVP1l4 = { "allAvailableCalls": ["a([%[paraml: number]%], [
-1
var markerVP15 = { "allAvailableCalls": ["a([%[paraml: number]%], [%[pa
console.log(a(null, null).local);
var markerVPle = { "allAvailableCalls": ["a([%[paraml: number]%], [%[pa
@wholeClass({ "outsideGallery": "true" })
class BB {

@AnnotationVPl44.classVariableVE ()
markerVP31 = { "allAvailableCalls": ["a([%[paraml: number]%], [3[pa
@variableDeclarationClass({ "outsideGallery": "trues" })

—————— P .

- }
@AnnotationVP19.classVariableVE ()

H markerVP7 = { "zllRAvailableCalls": ["a([% [paraml' number]%], [%
- § 1, "global": { "globalVariables": [{ "name": "newVariable"
: }

= var markerVP8 = { "allAvailableCalls": ["a([%[paraml: number]%], [%
- 5 § }1 }, "inner": { "p": 737 "allAvailableCalls": ["a([%[

- : 5 § 11 }, "inner": { "p": 737, "allAvailableCalls": ["a([%[

1 har newVariable = "Hallo";
2
3 function a(paraml, param?) {
4 % class GG {
5 —] ' callMe() {
6 § E console.log("Called™);
- !
8 - }
& new GG().callMe() ;
10 let local = 5;
11 var globalOne = ©;
12 let localZ = 5;
13 var globalOneZ = ©&;
14 return self;
15 ~}
16 console.log(a(null, null).local);
17
18 class BB {
19 E nnnnn = 4;
20 = constructor (ccc: number, ddd: number)
21 §
22 - }
23
24 = funnnc(eee): string {
2E §
26 - }
27
28 = inner(): wvoid {
29 let wwwww = 4;
30
31 = function cfunc(pr, pr2) {
32 console.log(pr + pr2);
33 console. log ("wwwww™) ;
34 console.log (Wwwwww) ;
35
36 = function sssss() {
37 : console.log("Done") ;
38 - }
39 - }
40 sssss () ;
41 cfunc (wwwww, this.nnnnn) ;
42 - }
43
14 rrrr = 4;
45
46 ~}
47
48 new BE() .inner () ;




@ce an OrD
0

— —— — —
—

T —

— —
— o —

OrderManager

orderProduct)

Product

o

— —— — —
— -

OrderManager

— —
—
—

—
— —
e e — —

cancelOrder()

Product

N

OrderManager

orderProduct()
cancelOrder()




Dynamically extending class

1. Declaring class Prototype-based
» class VerticePair { 2. InStantiating ClaSS

» constructor(x, ) . . .
(o Y var verticePair = new VerticePair(5, 6);

var newX = verticePair.x;
> this.y =y; console.log(newX); //newX //(or) //to prints n

>}

» this.x = X;

» getX() { return this.x; }

> getY() { retun this.y; } 3. Extending class dynami

>
} -possibly with new features... that can be then evolvedg.c'iep

VerticePair.prototype.checkPoint = function() { if (this.x > 2) { throw new Error(‘Coordinate X i

4, Using the extension

verticePair.checkPoint();




Test

> class VerticePair {

constructor(x, y) {
this.x = x;
this.y = y;

h

getX() { return this.x; }
gety() { return this.y; }

¥

var verticePair = new VerticePair(5, 6);
var newX = verticePair.x;
console.log(newX); //newX //to prints neuwX

VerticePair.prototype.checkPoint = function() { if (this.x > 2) { throw new Error( 'Coordinate X 1is greater!');} }

verticePair.checkPoint();

@ » Uncaught Error: Coordinate X is greater! VM266:17

at VerticePair.checkPoint (<anonymous>:17:73)
at <anonymous>:18:13



Dynamically extending obje

1. Declaring class

» class VerticePair {

» constructor(x, y) {
» this.x = x;
» this.y =y;
> }
» getX() { return this.x; }
» getY() { return this.y; }

>}

verticePair.checkPoint = function() { if (this.x > 2) { throw new Error('Coordinate X is

verticePair0.checkPoint();

verticePair.checkPoint();

-possibly with new features... that can be then evolved indepe

4. Using the extension

=

Dynamic Objec

2. Instantiating class

var verticePair = new VerticePair(5, 6);
var newX = verticePair.x;
console.log(newX); //newX //(or) //to print

var verticePairO = new VerticePair(1, 6);

3. Extending class dynami

Is it successfull? Is extension bound t



> class VerticePair {

constructor(x, y) {
this.x = x;
this.y = y;

h

getX() { return this.x; }
gety() { return this.y; }

¥

S class VerticePair { var verticePair = new VerticePair(5, 6);
var newX = verticePair.x;

console.log(newX); //newX //to prints newX
constructor(x, y) {
this.x = x; var verticePair@ = new VerticePair(l, 6);
this y Vs verticePair.checkPoint = function() { if (this.x > 2) { throw new Error('Coordinate X is greater!');} }
. ¥

} verticePair.checkPoint();

@ » Uncaught Error: Coordinate X is greater!
at verticePair.checkPoint (<anonymous>:17:63)
at <anonymous>:19:13

getX() { return this.x;
getY() { return this.y;

(-

¥

var verticePair = new VerticePair(5, 6);
var newX = verticePair.x;
console.log(newX); //newX //to prints newX

var verticePair® = new VerticePair(l, 6);

verticePair.checkPoint = function() { if (this.x > 2) { throw new Error('Coordinate X is greater!');} }
verticePair®.checkPoint();

verticePair.checkPoint();

@ » Uncaught TypeError: verticePair@.checkPoint is not a function
at <anonymous>:18:14

VM311:17

VM308:18




AspectJ Basics




Aspect
Aspect Speciication

= Weaving

H
=

Modified Code

Base Code

source code source code

Source: https://sites.google.com/site/sites/syst
WebspaceNotFound?path=%2Fjavatouch%2Fi
toaop

Compiler —.

executable executable



https://sites.google.com/site/sites/system/errors/

Advice

- The advice is the action and decision-making part which it allows for the
expression of intersecting action at the joining point (Laddad 2003).
Point connection is captured by the corresponding pointcut. It is implemented
as construction in the form of a method called before (before), behind (after)
or wrapping (around) the specified join point.

- To express modification of original code

» Player around(): myPointcut {
» Scanner reader = InputReader.getReader();
» System.out.println("Set player name:");

» String playerNamelLine = reader.nextLine().replace("\n", "");

» Player createdPlayer = proceed();

» createdPlayer.setName(playerNamelLine);

» System.out.println(createdPlayer.getName());

» return createdPlayer;




Pointcut

-selects sets of join points and collects context in their place

Example
To capture constructor call, when Player instance is going to be created

call(Player.new(..))

To check condition (for example for variability handling)

To capture constructor call, when Player instance is going to be created,
but setNames from Configuration has to be true

» call(Player.new(..)) && if(Configuration.setNames);

Complex examples with whole declaration (within aspect):

pointcut manageDifficultyDuringlnstantiationOfPlayerOpponent(
String opponentID, int[] playerShips, BoardManager boardManager):
call(AbstractPlayer Battleship.instantiateOpponent(String, int[], BoardManager))
&& args(opponentID, playerShips, boardManager) && !within(DifficultyManagement);

pointcut manageDifficultyDuringInstantiationOfPlayerOpponent2(
Battleship battleship, String opponentID, BoardManager boardManager):
call(AbstractPlayer Battleship.instantiateOpponent(String, BoardManager))
&& args(opponentID, boardManager) && this(battleship);




Pointcut language

call(Player.new(..))

&

Player class  To capture
is called constructor

Any number, name, and type of arguments

execution(Player.new(String))

&

Player class  To capture
is executed constructor

With one argument from which the first one has ty




Introduction

-a static crosscutting instruction
-to introduce relation such as specialization

Example [USED FOR EXAMPLE JUST TO MARK SOME
CLASSES FOR FURTHER PROCESSING]:

declare parents: Human implements taxDodger;




Compile-time declaration

-a static crosscutting instruction
-to introduce compile time warnings and errors to warn or prevent
some unwanted development practices

Example [TO PREVENT AND CHECK UNWANTED DEVELOPING PRACTICES]:
-a compiler warns when any of System.print or System.println method is used

declare warning: call(void System.out.print*(..)) :
“Do not output directly to the console. Use logger instead!”;




Example: Intertype declaratio
AspectJ

public aspect PlayerName {

Extends Player class with varia

‘ I called name with String type
Extends Player class with fu
' setName(String playerNam

» private void Player.setName(String playeriName) {

» private String Player.name;

» this.name = playerName;

>} Extends Player class with function
getName()

» private String Player.gethame() {
» return this.name;
>}
Possibly to set up functionality additively a
only empty classes that will be extended :




@ce an OrD
0

— —— — —
—

T —

— —
— o —

OrderManager

orderProduct)

Product

o

— —— — —
— -

OrderManager

— —
—
—

—
— —
e e — —

cancelOrder()

Product

N

OrderManager

orderProduct()
cancelOrder()




Example: Aspect in AspectJ

public aspect PlayerName { ’

» Player around(): call(Player.new(..)) && if(Configuration.setNames)){
» Scanner reader = InputReader.getReader();
» System.out.println("Set player name:");

» String playerNamelLine = reader.nextLine().replace("\n", "");

» Player createdPlayer = proceed(); ‘

» createdPlayer.setName(playerNamelLine);
» System.out.println(createdPlayer.getName());

» return createdPlayer;
>}




How to run AspectJ?

1. Download Eclipse 2024 - 06: ->
https://www.eclipse.org/downloads/packages/release/2024-
06/r -> Eclipse IDE for Java Developers 328 MB

2. If it is ZIP unpack it to directory:
C:\Users\{profile}\eclipse\java-2024-06, otherwise follow
instalation steps

3. Launch eclipse.exe positioned in above directory
4. In menu Help -> Eclipse marketplace ->AJDT -> install

. In menu File -> new Project -> Other -> AspectJ -> AspectJ
Project

Compatibility information: https://marketplace.eclipse.org/content/aspecti-dev



https://marketplace.eclipse.org/content/aspectj-development-tools

The Complexity of Asymmet

Aspect Oriented Programmi
In its pointcut language.

y




Aspect-Oriented
Programming is
Quantification And
Obliviousness.

R. E. Filman and D. P. Friedman, 20




Use of Aspects in
Software Product Lines




Aspect-Oriented
Product Line

» An Incremental Aspect-Oriented Product
Line Method for J2ME Game Development

n"

LAY -
\\

b‘i

&>
v P

\ >

» exploring the platform variation arising due
to use of proprietary APl and limited
memory. In particular, we consider three

platforms (PA, PB, and PC ) on which the same
game GM is run.

)€

Figure 1: Platform variation of the GM game
» PArelies solely on MIDP 1.0,

» whereas PB and PC rely on MIDP 1.0 and Source: Alves, V., Jr, P.
ProductLine Metho

» Further, PC constrains bytecode size to half of Development p.

the other platforms.




» The goal is to structure a product -
line around GM so that it can be
easily configured for any of the Ap p roac h

platforms PA, PB, or PC . The
outline of our approach is as Game Core (GM Aba:)
follows. First, given GM in PA and Product 1 5
PB, we identify variation points, / \
refactor code to encapsulate (PA) :
these points, and extract the
specialized behavior into AspectJ Product 2
aspects. The outcome is an aspect
for introducing the specifics of (PB)
each of these two p.latforms and Product 1 Product 2
an abstract GM, which we refer to
as GMADbs. Next, the resulting (PA) (PB)
product line is considered with

the remaining product, and we e

reapply the previously described Figure 2: Approach outline
procedure. The result is a new

product line encompassing all Source: Alves, V., Jr, PM., Borba, P.: An Incremer
three products. ProductLine Method for J2ME Game Develop

Retactormng

Aspect Aspect




Improving Reusability

Using the same functionality in different context

Has to be
variable

enough Reusability in

different
products

» Increase in size and complexity
of software systems

» Need for effective modularity
» Need for effective abstraction mechanisms

» Need for effective composition mechanisms SUPPORTING VARIABIL
- as attribute of moder

Automatization of
software

development Software product Generative

lines programming

Speeding up Highly reusable software
time to market components and libraries




Software Product Lines

» A software product line is a set of software-intensive syst
a common, managed set of features that satisfy the speci
a particular market segment or mission and that are developé
common set of core assets in a prescribed way

Systematically managing variability in a set
of software products Identifikacia variantov

Produced and reused in quantity of products
= product family

Identifikacia vyrazov
obsahujucich vnutorné

Core Ny PROBLCT vatahy
Assets FAMILY medzi variantmi
Documents, models, variantov s core
portfolios, project plans, aktivami

architecture, design
models, but primarily
software components.




New Dimension in
Software: Variability

Software product lines as complex software intensive s

Increased complexity:

-evolution of common assets
-independent evolution of products and their instantiation

Independent on structure, behaviour, and its state
' - problem with modularization

Modularizing different kinds of variability

Preserving encapsulation and
communication over explicit interfaced




Feature-Oriented Decomposi

Analysis only of those modules of the features that ar
available in product
f%atur

Design benefits

- Independent evolution of product line features
- Modular introduction of new features

- Does not always reflect on technical commonalities between

Does not rely on one-to-one correspondence of
features from feature model and features describin
ariations in software product line Taken from: Rashid, A, Roye

Aspect-Oriented, Model-Dri

nd implementation modules The AMPLE Way (09 201




Views on Software Product
Line Development

Clements & Krueger, 2002 Reactive/extractive

software product line

engineering \

Proactive

Accumulation of investition in
form of as much high reuse of
functionality from existing

software product line
engineering

Forward design and

engineering investition to .

point where enough products Neet to support generalization of
s e e reusable assets from specific

products by systematic refactoring

Architectonical
refactoring

Development technology




Problems with repeatable
benefiting from software
p rOd u Ct li n es Awais Rashid, Jean-Claude Royer and Andrea

3. Focus on
various business
contexts

Each with own
complexity

1. Challenge
with scaling

2. Systematicity of
variations

HIGH NUMBER V ktorej maju
OF VARIANTS tendenciu
ovplyvnovat’
architekturu celého
radu softvérovych

Problem to comprehend vyrobkov
interactions between variants

Exponential increase of
inner dependencies and
mutual relations

Tackled by AMPLE project



Product Line Engineering (PL

Vyrobok (product)

Expressing model in
PLE context 4

shares

COMMON VARIABLE products from each
CHARACTERISTICS CHARACTERISTICS other
(COMMONALITIES) (VARIABILITY)

Is differentiated by

Vlastnost’
(feature)

Differentiates the

Managed in PLE within

platform)

Product derivation
(derivation)

Process of product creation
Technolégie umoznuju jeho

plnu automatizaciu

User-visible aspect

Usually
Semi-
automaticall

Platforma
(platform)

Set of components that are
reused during the
development
(regardless of the narrowness of their
integration)

-combines and manages all
available artifacts (for
product creation)

-serves as technological basis

A set of core artifacts

Products created on top
of core artifacts

Set of technologies for
product derivation




Varia¢ny bod

Varianty
(Variants)

Configuration

(Variation Point)

A choice amongst multiple

Formed when variation

options during the Characteristics exposed i bound ¢ =
management of variable by a platform and pointis ovl::ue eRplEEliE
features by the platform j modified into some

extent j

Features

Independent

features o

Dependent

features on

Features with incorporation of
relations to another feature

Mutually Features
exclusive (V lastnosti )

features

other features




Domain Development of compo
. . Introduction of platform
engineering including all associated activities Domain Engineering |

domain domain
Defining common and variable features

knowledge model
Creating the components responsible for
variability management

architec-
ture(s)

new
regirements

*domain-specific
languages

*generators

*components

Creation of tools for differentiating and
tracing of variability (tools and methods of
reusable components management)

Defining the range in which products can
be constructed
Application Engineering

Application .
engineering Creation of product/products Product instantiation - W]th ré

new
customer requirements

needs

product

configuration

Software product lines and domain engineering:
K. Czarnecki. Generative Programming: Principles and Techni

Deriving products with he[p of tools from of Software Engineering Based on Automated Configuratio
. Fragment-Based Component Models. Ph.D. Thesis,
previous phase

Customization of existing product: creating [N WP E

application specific components for one Software Product Lines: The AMPLE Way. C

: University Press. doi:10.1017/CB09781139
particular product



https://pdfs.semanticscholar.org/5248/8cb80b33f4cef7a8246897afe5dce870629c.pdf

NEWLY

REQUESTED
FEATURE

Provided by components to
increase reuse

Neapgidatealon Domain Application MULTIPLE
introducing the engineerin . .
St g g ~%¢ engineering PREDICTABLE
— — Both phases FEATURES
Designing the platform to support

o : : run in parallel
application engineering

Reusable templates, elements (models,

documentation, source code,...), and parts Other Uses templates and elements during the
usable in application engineering artifacts are creation of resulting products

on output

IT IS NOT ABOUT COLLECTING ELEMENTS IN
REPOSITORIES AIMING TO REUSE THEM

: Variability
Need to describe modelling
variability
-available components Difference in comparison with
i isti software engineering of one product

Feature models



ECaesarJ - Evolving Software

Product Lines

<<Abstract Class>>

Location

- shutters: List<Shutter>
- lights: List<Light>

<<Abstract Class>>

CompositelLocation

+ locations(): List<? extends Location>
+ shutters(): List<Shutter>
+ lights(): List<Light>

<<Class>> <<Abstract Class>>

Room LocationHeaters

- shutters: List<Shutter> - heaters: List<Heater>

- lights: List<Light>

+ shutters(): List<Shutter>
+ lights(): List<Light>

<<Class>>

Floor

- rooms: List<kRoom>

+rooms(): List<Room>
+addRoom(room: Room): void
+ locations(): List<? extends Location>

<<Class>>

House

- floors: List<Floor>

+ floors(): List<Floor>
+ addFloor(floor: Floor): void
+ locations(): List<? extends Location>

<<Abstract Class>>

CompositeLocationHeaters

+ heaters: List<Heater>

+ heaters(): List<Heater>

1

<<Class>>

RoomHeaters

+ heaters: List<Heater>

+ heaters(): List<Heater>



Modularization of Static Stru

1. No replacement of classes in inheritance relationship.

-redeclaration of inheritance relationship
between classes

MULTIPLE INHERITANCE

- introduction of additional glue code (for example in C++)

2. Incorporation of planned functionality (domain knowledie)

INVASIVE CHANGES OTHERWISE

- If open-closed principle cannot be used = implementation of core features has to
during introduction of product-specific feature

ech

—

3. Instantiation of extended classes instead of original on

w Here: REDEFINITION IN ALL PLA
a1 static !—!ouse !1ouse.= new lI:lo.use(); EXTENDED CLASS IS



Handling Event Using Obser
DeSign Pattern Modularization of behavio

1. Much glue code - registration and notification of observe

2. Incorporation of planned functionality (domain knowled

e)
INVASIVE CHANGES OTHERWISE i

- If open-closed principle cannot be used = implementation of core features has to be ch
during introduction of product-specific feature

3. No support of declarative definition of events
- Difficul u defini
Cpgpieutt vo rewse Jordefining EXPLICIT TRIGGERING |



Quality of Applying Voluntary

Features Using AspectJ

More complex AspectJ
solution in some case 2x as long

Redundant use of
parameters in Scope problem
AspectJ pointcuts

Need of using state
extension

Variables can be
Use hook methods S accessed by

to extend context ‘ E priviledged aspects y
PP\OB 4

Inability to create .
own exception for | Use of dynamic

new Aspects exceptions is
required




NN Wb WD -

= O e

3
12
13

public class IN |
public int insertEntryl (CR entry) ( //...

If (nEntries < entryTargets.length) { //...
updateMemorySize (0, getInMemorySize(index)):
adjustCursorsForInsert (index); //...

}

)

public aspect MemoryBudget |
before (IN in, int index):
call (vold IN.adjustCursorsForInsert(int)) &&
this (in) && args (index) &&
withincode (int IN.insertEntryl (CR)) |
in.updateMemorySize (0, in.getInMemorySize (index));
)
)

Figure 3. Extract Before Call Refactoring.

SLCeCXIDNnE W -

—_—

11
12
13
14
15
16
17
18
19
20
21
22
23

public class Tree |
public long insert (LeafNode 1ln, byte[] key,
BottomNode bin = findBINForInsert (key,
long position = ln.log(key, ...);
bin.updateEntry(ln, position, key);
bin.clearKnownDeleted();
trace(bin, In, position);

ees) A

penza )

. .

public class Tree |
public long insert (LeafNode 1ln,
bin,.clearKnownDeleted();
hook (bin, 1ln, position);

...

}
void hook (BottomNode b, LeafNode 1, long p) {}

}
public aspect TreeLogging {
before (BottomNode bin, LeafNode ln, long pos):
execution (vold Tree.hook(...)) && args(bin,ln,pos)
trace(bin, ln, pos)
}

byte([] key, ...) { ...

{

Figure 5. Local Variables Access Problem.




Variability-driven = sample T A_ST - oy
Evolution  s¢P! ) 2.) Applyin
|parsr t tggfgs 1%:’
Evolution strategie
iteration of SPL variability-
selections

candidate script:

1§ J\' _
@ ;‘: J \}candfdate

8.) Supporting
proposed
models

preparatfon

1 |</>

3.) AST synthesis

B /7.) Onthology
SPL4 ) Cloning SPL or dataset

+ update of evolved update
()
ke

/synthesized sample script

@*

6.) Data
and knowfedge
—— extraction and

= | processing

5.) Optionally
deriving products




o

END

Creating and annotating
the fractal script

Choosing the best
instances

Deriving instances Enhancing thir.d-party
. models/evolving SPL
of its type

Annotating

) the results
Getting

screenshots

Associating all related
information from the given
variation point for each

Executing the fractal node/connection

instance (inside Python)

gCreating vector

representation

AST trees,
diagrams,...

Creating another
representations

Creating graphs
from instances

e Merging graphs
Extracting relational N0+Yeﬁ according to the
data/BIG data

same instances
Should graphs

be aggragated?

. Aggregating collected
representations into dataset




References

CaesarJ: https://caesarj.org/

Product Line Implementation with ECaesarJ: Rashid, A., Royer, J.C., Rummler,
A. (eds.): Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
(09 2011)

» Aspect-oriended recreation of design patterns, application of patterns: R.
Miles, AspectJ cookbook, 1st ed. Sebastopol, CA; Farnham: O’Reilly Media, 2004.

» Aspect-oriented recreation of Observer design pattern: E. Piveta and L.
Zancanella, “Observer pattern using aspect-oriented programming,” Proceedings
of the Third Latin American Conference on Pattern Languages of Programming, p.
12, 12 2003

» Complexity of In-code Variability - Evaluating Complexity of Cariability
Management Constructs: Perdek, Jakub, and Valentino, Vranic. "Complexity of In-
Code Variability: Emergence of Detachable Decorators."”, In Reuse and Software
Quality (pp. 51-71). Springer Nature Switzerland, 2024.

» Framed Aspects: Loughran, N., Rashid, A.: Framed aspects: Supporting variability
and configurability for AOP. In: Proceedings of 8th International Conference on
Software Reuse, ICSR 2004. LCNS 3107, Springer, Madrid, Spain (2004)



https://caesarj.org/

References

» Supporting Product Line Evolution With Framed Aspect: Loughran, N., Rashid,
A., Zhang, W., Jarzabek, S.: Supporting product line evolution with framed
aspects p. 5 (2004)

» YOUNG, Trevor J a B MATH, 1999. Using AspectJ to Build a Software Product
Line for Mobile Devices. 1999, s. 73.

» ZHANG, Tao, Lei DENG, Jian WU, Qiaoming ZHOU a Chunyan MA, 2008. Some
Metrics for Accessing Quality of Product Line Architecture. V: 2008 International
Conference on Computer Science and Software Engineering: 2008 International
Conference on Computer Science and Software Engineering [online]. Wuhan,
China: IEEE, s. 500-503. ISBN 978-0-7695-3336-0. Dostupne na:
doi:10.1109/CSSE.2008.500

» FILMAN, Robert E a Daniel P FRIEDMAN. Aspect-Oriented Programming is
Quantification and Obliviousness. 2001.

» Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. IEEE Computer 41, 93-95 (01 2008). Paper

» Alves, V., Jr, P.M., Borba, P.: An Incremental Aspect-Oriented Product Line
Method for J2ZME Game Development p. 3 (Jan 2004)



https://doi.org/10.1145/1753235.1753276

~ ° i ] \\
Zlepsenie znovupouzitelnost

e e Musia by
Pouzitia tej istej funkcionality v inom kontexte dostatocne

variabilne

Znovupouzitelno
st’ v inych
produktoch

» Narast komplexnosti a velkosti systémov

» potreba efektivnej modularnosti

» potreba efektivnych mechanizmov abstrakcie

» potreba efektivnych kompozicnych mechanizmov
PODPORA VARIABILITY

- ako atribat modernyc
vyvoja

automatizacia

softvérového Rady

vyvoja softvérovych
vyrobkov

Generativne
programovanie

< '

Vysoko znovupouzitelné kniznice
a komponenty

Urychlenie casu predaja
- time to market




Rady softverovych vyrobkov

» A software product line is a set of software-intensive systems shari
managed set of features that satisfy the specific needs of a particula
segment or mission and that are developed from a common set of core @
prescribed way

Systematické manazovanie variability
v suprave produktov

Produkované a znovupouzivané

v mnozstve produktov Identifikacia vyrazov
= rodine produktov obsahujucich vnutorné

Core ‘ RODINA vztahy
SKtiva PRODUKTOV
Dokumenty, modely, variantov s core
portfolia, projektové aktivami

plany, architektura,
navrhové modely, a hlavne
komponenty.

Identifikacia variantov

medzi variantmi




Pohlady na vyvoj radov
softvérovych vyrobkov

Clements & Krueger, 2002

Proaktivne

inzinierstvo radov
softvérovych vyrobkov

Dopredny navrh a inzinierska
investicia do bodu ked’ sa
vygeneruje dostatocné

Reaktivne/extraktiv

Ne inzinierstvo radov
softvérovych vyrobkov \

Akumulacia investicii v podobe
Co najvacsieho znovupouzitia
sucasti/funkcionality z

’
X N V) DDAKO

Potreba podpory zovseobecnenia
znovupouzitelnych aktiv z
konkrétnych vyrobkov systematickym
refaktorovanim
Architektonicky
refaktoring

Vyvojova technolégia



Problemy v opakovanom
benefitovani z radov
softvérovych vyrobkov

Awais Rashid, Jean-Claude Royer and And

3. Zameranie sa
na rozlicné
biznis kontexty

Kazdy s vlastnou
zlozitost'ou

1. Vyzva so

oy 2 , 2. Systematickost’
skalovanim

variacii

VYSOKY
POCET
\ZLUN )

V ktorej maju
tendenciu
ovplyvnovat’
architekturu celého
radu softvérovych
vyrobkov

Exponencialny narast
vnutornych zavislosti
a vzajomnych
vzt'ahov

Problém pochopit’ interakcie
medzi variantmi

hd

Riesené v AMPLE projekte




Inzinierstvo radov softveérov

Vyrobok (product)

Oznacenie modelu v
kontexte PLE

Zdiela

SPOLOCNE
CHARAKTERISTIKY
(COMMONALITIES)

4

Je rozliseny

ROZDIELNE

CHARAKTERISTIKY

(VARIABILITY)

Manazované PLE  ramci

platformy)
Odvodenie

vyrobkov

derivation
Proces tvorby

Technolégie umoznuju jeho

plnu automatizaciu

Zvycajne
Semi-
automaticky

VerkaV Product line e
(PLE)

Platforma

Vlastnost’ (platform)

(feature) MnoZina komponentov

— znovupouzitych pocas

OdliSenie vyrobkov vyvoja
jeden od druhého Y. (bez ohladu na uzkost' ich
integracie)

-kombinuje a manazuje
vsetky dostupné artefakty
(pre vytvorenie vyrobku)

-sluzi ako technologicka

User-visible aspect

Mnozina core artefaktov

Vyrobky vytvarané
na vrchu core artefaktov

Mnozina technolégii pre
odvodenie vyrobkov



Varia¢ny bod

Konfiguracia (Variation Varl.anty
(Variants)
A 'Pedztf Vi?CGI:)'Imi Charakteristika Formované ked' variaény
moznostami Erll 2ch vystavena/ bod sa naviaze s istou
manazovani variabiinyc j exponovana platformou a hodnotou
vlastnosti platformou pozmenitelna do istej
miery j

Vlastnosti (features)

Navzajom
nezavislé

vlastnosti
Vzajomne sa Vlastnosti
vylucujuce

vlastnosti (feat ures ) Vyzadujuce

zahrnutie inej

Majuce vztahy s vlastnosti
inymi

vlastnost’'ami




Domeénove Development of compo
S Proces zavedenia platformy

ane vsetkych pridruzenych aktivit Domain Engineering |

domain domain
knowledge model

architec-
ture(s)

Definovanie spolo¢nych a rozdielnych crt

Tvorba komponentov zodpovednych za
manazovanie variability

Tvorba nastrojov pre rozlisenie a reqirements
ramapovanie variability (nastroje a metédy
manazmentu znovupouzitelnych o
komponentov customer requirements

needs
Definovanie rozsahu v akom mozu byt’
produkty konstruované

*domain-specific
languages

*generators

*components

product

. X
Application Engineering configuration

Aplikacéné .
inzinierstvo Tvorba produktu/produktov Product instantiation - W]th ré

Software product lines and domain engineering:
K. Czarnecki. Generative Programming: Principles and Techni

Odvodenie produktov P4=1olelaglelet ploiyn ey o) o4 | of Software Engineering Based on Automated Configuratio
p . s . £ Fragment-Based Component Models. Ph.D. Thesis,
predchadzajucej fazy

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011)
Software Product Lines: The AMPLE Way. C

Kustomizacia existujuceho vyrobku: tvorba
1oLl o e =l (el e | ol palalelgl=lpidel A4 ol et | University Press. doi:10.1017/CBO9781139



https://pdfs.semanticscholar.org/5248/8cb80b33f4cef7a8246897afe5dce870629c.pdf

NOVO-

VYZIADANA
VLASTNOST

Poskytnutie komponentmi
pre zvysenie Urovne

Zlgigg]ed;te ndao . ng.enove Ap likacnhé Znovupouzitia
platformy InZinierstvo Obe fazy ¢ inZinierstvo VIACERE
Navrh platformy pre podporu bezia PREDVIDATELNE

aplikacného inZinierstva paralelne VLASTNOSTI

Znovupouzitelne sablony, elementy (modely, Vystupom su VyuZiva 3ablony a elementy pri tvorbe
dokumentacia, zdrojovy kod,...) , a casti iné artefakty vyslednych produktov
pouzitelne v aplikachom inzinierstve

NIE JE TO O ZBIERANI ELEMENTOV V
REPOZITAROCH S CIELOM ICH
ZNOVUPOUZIT

Nutny popis
variability
-dostupnych komponentov

Modelovanie
variability

Rozdiel oproti beznému
softvérovému inzinierstvu jedného
vyrobku

Modely vlastnosti



	Snímka 1: Advanced Modularization, Aspects, and Their Application in Software Product Lines
	Snímka 2: Ing. Jakub Perdek About the author
	Snímka 3: Web Page of the  subject
	Snímka 4: Aspect-Oriented Software Developement
	Snímka 5: What it will about?
	Snímka 6
	Snímka 7
	Snímka 8: Previous page of the course
	Snímka 9: Projects
	Snímka 10: Mini  Project
	Snímka 11: Project Assessment
	Snímka 12
	Snímka 13
	Snímka 14: Overall Assessment
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18: Plagiarism
	Snímka 19: Plagiarism Prevention / Guidelines
	Snímka 20: Advanced Modularization, Aspects, and Their Application in Software Product Lines
	Snímka 21
	Snímka 22
	Snímka 23: Good Modularity
	Snímka 24: Bad modularity
	Snímka 25: How to separate concerns?
	Snímka 26
	Snímka 27
	Snímka 28: Injecting content to particular places after development.
	Snímka 29: Similar analogy  with use cases?
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35: Approach to  Use-Case Modelling  Using Aspects
	Snímka 36
	Snímka 37
	Snímka 38: Symmetric AOP modularization
	Snímka 39: Symmetric AOP modularization
	Snímka 40
	Snímka 41
	Snímka 42: Symmetric AOP modularization
	Snímka 43:   Peer use cases          vs.    Extend relationship
	Snímka 44: Dictionary of basic terms
	Snímka 45: Dictionary of basic terms
	Snímka 46: Dictionary of basic terms
	Snímka 47: Implementation of logging         concern
	Snímka 48: Pointcuts – different kinds
	Snímka 49: Example: Annotation based join points
	Snímka 50: Application: Software product line for fractals
	Snímka 51
	Snímka 52
	Snímka 53: Dynamically extending class
	Snímka 54: Test
	Snímka 55
	Snímka 56
	Snímka 57
	Snímka 58: Weaving
	Snímka 59: Advice
	Snímka 60: Pointcut
	Snímka 61: Pointcut language
	Snímka 62: Introduction
	Snímka 63: Compile-time declaration
	Snímka 64: Example: Intertype declaration in AspectJ
	Snímka 65
	Snímka 66: Example: Aspect in AspectJ
	Snímka 67: How to run AspectJ?
	Snímka 68: The Complexity of Asymmetric Aspect Oriented Programming
	Snímka 69: Aspect-Oriented  Programming is Quantification And Obliviousness.
	Snímka 70: Use of Aspects in Software Product Lines
	Snímka 71: Aspect-Oriented  Product Line
	Snímka 72: Approach
	Snímka 73: Improving Reusability
	Snímka 74: Software Product Lines
	Snímka 75: New Dimension in Software: Variability
	Snímka 76: Feature-Oriented Decomposition
	Snímka 77: Views on Software Product Line Development
	Snímka 78
	Snímka 79: Product Line Engineering (PLE)
	Snímka 80: Features
	Snímka 81
	Snímka 82
	Snímka 83: ECaesarJ – Evolving Software Product Lines
	Snímka 84: Modularization of Static Structures
	Snímka 85: Handling Event Using Observer Design Pattern
	Snímka 86: Quality of Applying Voluntary Features Using AspectJ
	Snímka 87
	Snímka 88: Our  Approach
	Snímka 89
	Snímka 90: References
	Snímka 91: References
	Snímka 92: Zlepšenie znovupoužiteľnosti
	Snímka 93: Rady softvérových výrobkov
	Snímka 94: Pohľady na vývoj radov softvérových výrobkov
	Snímka 95
	Snímka 96: Inžinierstvo radov softvérových         výrobkov
	Snímka 97: Vlastnosti (features)
	Snímka 98
	Snímka 99

